Publikationen aus Organo-Strat

37.
Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert ea. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell. 2022; 185493—512.e425.
36.
Pietzner M, Chua RL, Wheeler E, Jechow K, Radbruch H, Trump ea. ELF5 is a respiratory epithelial cell-specific risk gene for severe COVID-19. medRxiv. 2022;      [DOI] 
35.
Hönzke K, Obermayer B, Mache C, Fathykova D, Kessler M, Dökel ea. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages. Eur Respir J. 2022; 60(6):2102725.      [DOI] 
34.
Schreiber A, Viemann D, Schöning J, Schloer S, Mecate Zambrano A, Brunotte ea. The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cell Mol Life Sci. 2022; 7965.      [DOI] 
33.
Wang Z, Cryar A, Lemke O, Ludwig D, Tober-Lau P, Helbig ea. A multiplex protein panel assay determines disease severity and is prognostic about outcome in COVID-19 patients. medRxiv. 2021;      [DOI] 
32.
Demichev V, Tober-Lau P, Lemke O, Nazarenko T, Thibeault C, Whitwell ea. A time-resolved proteomic and prognostic map of COVID-19. Cell Syst. 2021; 12780—+.
31.
Stanifer ML, Boulant S. Adapting Gastrointestinal Organoids for Pathogen Infection and Single Cell Sequencing under Biosafety Level 3 (BSL-3) Conditions. JoVE. 2021; (166):e62857.      [DOI] 
30.
Schulze J, Mache C, Balazs A, Frey D, Niemeyer D, Olze ea. Analysis of SARS-CoV-2 replication in explant cultures of the human upper respiratory tract reveals broad tissue tropism of wild-type and B.1.1.7 variant viruses. J Infect Dis. 2021;      [DOI] 
29.
Aschman T, Schneider J, Greuel S, Meinhardt J, Streit S, Goebel ea. Association Between SARS-CoV-2 Infection and Immune-Mediated Myopathy in Patients Who Have Died. JAMA Neurol. 2021; 78948—960.
28.
Kumar S, Çalışkan D, Janowski J, Faist A, Conrad B, Lange ea. Beyond Vaccines: Clinical Status of Prospective COVID-19 Therapeutics. Front Immunol. 2021; 12752227.
27.
Ochs M, Timm S, Elezkurtaj S, Horst D, Meinhardt J, Heppner ea. Collapse induration of alveoli is an ultrastructural finding in a COVID-19 patient. Eur Respir J. 2021; 57      [DOI] 
26.
Brunotte L, Zheng S, Mecate-Zambrano A, Tang J, Ludwig S, Rescher ea. Combination Therapy with Fluoxetine and the Nucleoside Analog GS-441524 Exerts Synergistic Antiviral Effects against Different SARS-CoV-2 Variants In Vitro. Pharmaceutics. 2021; 13
25.
Ritschel N, Radbruch H, Herden C, Schneider N, Dittmayer C, Franz ea. COVID-19 and the central and peripheral nervous system. Pathologe. 2021; 42172—182.      [DOI] 
24.
Adhikary P, Ul Ain Q, Hocke A, Hedtrich S. COVID-19 highlights the model dilemma in biomedical research. Nat Rev Mater. 2021; 1—3.
23.
Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer ea. Cross-reactive CD4(+) T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science. 2021;
22.
Deinhardt-Emmer S, Wittschieber D, Sanft J, Kleemann S, Elschner S, Haupt ea. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. Elife. 2021; 10
21.
Gruber A, Firsching T, Trimpert J, Dietert K. Hamster models of COVID-19 pneumonia reviewed: How human can they be?. Vet Pathol. 2021;
20.
Lehmann M, Allers K, Heldt C, Meinhardt J, Schmidt F, Rodriguez-Sillke ea. Human small intestinal infection by SARS-CoV-2 is characterized by a mucosal infiltration with activated CD8(+) T cells. Mucosal Immunol. 2021; 141381—1392.
19.
Trump S, Lukassen S, Anker SM, Chua RL, Liebig J, Thurmann ea. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat Biotechnol. 2021; 39705—716.      [DOI] 
18.
Wyler E, Adler JM, Eschke K, Alves GT, Peidli S, Pott ea. Insights into standards of care – dexamethasone and antibodies against COVID-19 in hamster models. bioRxiv. 2021;      [DOI] 
17.
Schroeder S, Pott F, Niemeyer D, Veith T, Richter A, Muth ea. Interferon antagonism by SARS-CoV-2: a functional study using reverse genetics. Lancet Microbe. 2021; 2e210—e218.      [DOI] 
16.
Laise P, Stanifer M, Bosker G, Sun X, Triana S, Doldan ea. Network-based identification and pharmacological targeting of host cell master regulators induced by SARS-CoV-2 infection. bioRxiv. 2021;      [DOI] 
15.
Aguilar C, Silva M, Saraiva M, Neyazi M, Olsson I, Bartfeld S. Organoids as host models for infection biology - a review of methods. Exp Mol Med. 2021; 531471—1482.
14.
Michalick L, Weidenfeld S, Grimmer B, Fatykhova D, Solymosi PD, Behrens F, Dohmen M, Brack M, Schulz S, Thomasch E, Simmons S, Müller-Redetzky H, Suttorp N, Kurth F, Neudecker J, Toennies M, Bauer TT, Eggeling S, Corman VM, Hocke AC, Witzenrath M, Hippenstiel S, Kuebler WM. Plasma mediators in patients with severe COVID-19 cause lung endothelial barrier failure. Eur Respir J. 2021; 57(3):2002384.      [DOI] 
13.
Niemeyer D, Schroeder S, Friedmann K, Weege F, Trimpert J, Richter ea. Post-entry, spike-dependent replication advantage of B.1.1.7 and B.1.617.2 over B.1 SARS-CoV-2 in an ACE2-deficient human lung cell line. bioRxiv. 2021;      [DOI] 
12.
Deinhardt-Emmer S, Bottcher S, Haring C, Giebeler L, Henke A, Zell ea. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J Virol. 2021;
11.
Wendisch D, Dietrich O, Mari T, Stillfried S, Ibarra IL, Mittermaier ea. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 2021; 1846243—6261.e6227.      [DOI] 
10.
Gassen N, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua ea. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun. 2021; 123818.
9.
Günl F, Mecate-Zambrano A, Rehländer S, Hinse S, Ludwig S, Brunotte L. Shooting at a Moving Target-Effectiveness and Emerging Challenges for SARS-CoV-2 Vaccine Development. Vaccines (Basel). 2021; 9
8.
Nouailles G, Wyler E, Pennitz P, Postmus D, Vladimirova D, Kazmierski ea. Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19. Nat Commun. 2021; 124869.      [DOI] 
7.
Ramirez Alvarez C, Kee C, Sharma AK, Thomas L, Schmidt FI, Stanifer ea. The endogenous cellular protease inhibitor SPINT2 controls SARS-CoV-2 viral infection and is associated with disease severity. PLOS Pathogens. 2021; 17(5):e1009687.      [DOI] 
6.
Hornung F, Rogal J, Loskill P, Löffler B, Deinhardt-Emmer S. The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int J Mol Sci. 2021; 22
5.
Kitazawa K, Deinhardt-Emmer S, Inomata T, Deshpande S, Sotozono C. The Transmission of SARS-CoV-2 Infection on the Ocular Surface and Prevention Strategies. Cells. 2021; 10
4.
Wyler E, Mosbauer K, Franke V, Diag A, Gottula LT, Arsie ea. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience. 2021; 24102151.      [DOI] 
3.
Schuster S, Lisack J, Subota I, Zimmermann H, Reuter C, Mueller ea. Unexpected plasticity in the life cycle of Trypanosoma brucei. Elife. 2021; 10      [DOI] 
2.
Witkowski M, Tizian C, Ferreira-Gomes M, Niemeyer D, Jones TC, Heinrich ea. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature. 2021;      [DOI] 
1.
Gruber A, Osterrieder N, Bertzbach L, Vladimirova D, Greuel S, Ihlow ea. Standardization of Reporting Criteria for Lung Pathology in SARS-CoV-2–infected Hamsters: What Matters?. Am. J. Respir. Cell Mol. Biol.. 2020; 63856—859.